
we obtain a nonlinear model of a couple-free continuum in a formulation unrestricted by the condition of smallness of the 
local rotations and thereby generalizing the formulation of Biot [2]. 

Thus, the proposed technique for the construction of nonlinear models of deformable media provides a unified 
kinematic foundation for couple-stress and couple-free media in an ultimately simple (vector) representation. 
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ASYMPTOTIC BEHAVIOR OF BOUNDARY-VALUE PROBLEMS 

FOR AN ELASTIC RING REINFORCED WITH VERY RIGID 

FIBERS 

Yu. A. Bogan UDC 539.3 

The following boundary-value problems are investigated for an elastic ring reinforced with very rigid fibers arranged 
in concentric circles: a) The stresses are given at the boundary; b) the bending deflection and angle of rotation are given 
at the boundary. The generalized Hooke's law [ 1] is adopted as the initial governing equations; as a consequence, the final 
results are valid for standard models of a composition elastic model [2, 3]. 

We formulate asymptotic representations of the solutions of boundary-value problems a) and b) on the assumption 
that the rigidity of the material in the circumferential direction is much greater than the shear rigidity. 

We show that a boundary layer sets in along the boundary; in case a) the boundary conditions for the limiting 
boundary-vaiue problem do not coincide with any of the boundary conditions for the sublimiting problem. Problem b) 
degenerates into the limiting problem in a regular manner. 

1. Let us consider problem a). We assume that the elastic ring is cylindrically orthotropic, and we apply the 
generalized Hooke's taw in the form [(r, 0) denotes polar coordinates] 

gr = CllEr ~ C12E0, G0 = C128r ~ C2280 ," ~r0 = C66~r0 �9 

We introduce the dimensionless stresses and rigidities, setting 

~, = ~ m - L  ~0 = ~0c;) ,  7,0 = ~,0c0; 1, d~j = c~m-L i, ] = i ,  2, 

and in all that follows we retain the same notation as before for the dimensionless stresses. Let d2= >> 1 ; in real situations 
this relation holds for an elastic ring reinforced with one very rigid set of fibers r = const. We put e ~ d -~ ~ 2 ,  d = d51, 

c = d~2 + 2d~, t = In r . Then the equation for the stress function w(t, 0) can be written in the form 

e~N(w) + M(w) ----- 0 (1.1) 

on the assumption that mass forces are absent. In (1.1) 

03w . 04w 0% - - 4  ~ - ~ ow ~ 2 d c ~ - - a c ~ - - d c - -  
N (w) = ~ ~ + a ~ ~ 2 ~ atoO at aO" 

. 04w , 04w 
M (w) = ct oo----- ~ ~ ot2o02 

Onto 

O0 2 ' 

- - - - 2  ~ _ , t  ~ + 2d Ow O~w 
otoO ~ - od ~ + (t -k 2d) aO ~. . 

Novosibirsk. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 6, pp. 118-122, November- 
December, 1980. Original article submitted October 29, 1979. 
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For r = a, r = b, 0 < a < b , we specify the boundary conditions 

(rr(a, 0) = pl(0), (rr (b, 0) = p3(0), 

X,o (b, O) = p~(O). 

We recall that 

We put to = lna ,  tl = l n b ,  and 

�9 ~o (~, O) = p , (o ) ,  

t Ow t 0 2 w  t Ow t OZw 

= _ _  x _  _ _ _ _  TrO = r~ O0 r OrO0 g r  r o r  ~ r 2 003 ' - -  

L~(w) = OwlOt + O~wlO0 2, L2(w ) = Ow/O0 - -  c~w/OtO0. 

The boundary conditions (1.2) can be written in the form 

(1.2) 

L [ ( w )  (to) - e~top, (0), 

Ll  (w) (tl) - -  e2tlpa (0), 

L~ (w)(to) = e~'01~. (0), 

L,, (w) (t~) = dhp~ (0). (1.3) 

The boundary conditions in the form (1.3) are unsuitable for asymptotic analysis, because the derivative with respect to t 
enters into all the boundary conditions. We reduce the boundary conditions to a more useful form. We put 

0 
82w 

P ~  = ~ + -~-_,, g~(o) - -  p,, (o) i J p~§ !u) a~, ~ -- i, 3, 
o 

r 
gk (0) = Ph-1 (0) --  Ph (0), k = 2, 4. 

We then obtain 

~t P w  (to) = e~t0gx (0), Pw (tl) = e lg~ (0); (1.4) 

__0 P ig  e2tog2 0 e2tl 
Ot (to) = (0),  ~ -  PW (tl) = g, (0). ( 1 . 5 )  

Thusl we derive the boundary conditions (1.4) at t = t o . For this purpose we integrate the boundary conditions L~ (1,,) (to) : 

eZt0p2(0) with respect to 0 and add the result to the first condition; we then obtain the fn'st condition (1.4). Differentiat- 

ing the boundary condition Lz(w)(to) = e2t0p~(0) with respect to 0 and adding the result to the first condition, we obtain the 

fLrst boundary condition (1.5). The procedure is analogous at t = t , .  

We now construct an asymptotic representation of  the solution of  the boundary-value problem (1.1), (1.2) for small 
e. For e = 0 Eq. (1.1) goes over to the equation M(w) = 0, which is of  the composition type [4] with a double family of  
real characteristics r = const. Variation of  the type of  Eqs. (1.1) in the limit is such that a boundary-layer effect is 
observed along the boundaries r = a, b in connection with the rapid variation of  the solution along the normal to the 
boundary in its immediate vicinity. The boundary-value problem (1.I),  (1.2) has a unique solution in the event of  self- 
equalization of  the load [ 1 ]. 

We seek an asymptotic representation of  the solution of  the boundary-value problem (1.1), (1.4)i (1.5) for small e 
by means of  two iteration processes [ 5 ]. 

First Iteration Process. We seek an approximate solution of  the boundary-value problem (I.1),  (1.4), (1.5) in the 
f o r m  

N 1 
w:vl(t ,  0) = ~ e'w,~(t, 0). (1.6) 

?2--0 

Substituting (1.6) into (1.1) and (!.4), we obtain the recursive systems of  equations 

2t 
M (Wo) = O, PW o (to) = e2togl (0),  P w  o (tl)  = e l g  3 (0); (1.7) 

M(Wl)  = O, M(w,~+~) + N(w,~) = O, n ~ O. (1.8) 

The boundary-value problem (1.7) represents the limiting boundary-value problem for the initial problem. The boundary 
conditions for the system (1.8) will be set forth later. The function WN, (t, O), generally speaking, does not satisfy the 

boundary conditions (1.5), so that near t = t o and t = t, it is necessary to construct functions of  the boundary-layer type, 
eliminating the discrepancy in the satisfaction of  the boundary conditions (1.5). 
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t =  t l ) .  
Second Iteration Process. We construct boundary-layer functions near t = t o (they are similarly constructed near 

Accordingly, we extend the coordinate t near t = t o, putting eT/= t - t o. Then Eq. (2) acquires the form 
2 
x~ ~Ph (w) O. (1.9) 

h=--2 

The explicit form of all the differential operators Pk(w), k = - 2 ,  - 1 ,  0, 1, 2 is immaterial for the ensuing discussion; we. 
give only the operator P_2(w): 

Oa w O4w 02w 

P _ 2 ( w ) - -  ~ 4 ~ 0@00z d 0n----- T .  (1.10) 

The differential operator P_2(w) in (1.10) is of  the composition type. We seek an approximate solution of  Eq. (1.9) in the 
form 

NI--1 
wNx(~l, O ) = s  ~. e"w~ 0). (1.11) 

Substituting (1.11) into (1.9), we obtain the recursive systems of equations 

P _ ~ o ~  p _ ~ ~ 1 7 6  P_~w~~ 
p_~w~ + P _ ~ w  ~ ' o o T PoWl + Plwo = O, 

0 0 i ~ . 0 r P-~ w~ -[- P-xw~ -+" Pown-2 @ Plwn-3 "T ,wn-4 = u, n ~ 4. 

(1. i2)  

The boundary conditions for determination of the boundary-layer functions have the form 

"q=O t=t O' 0 
OPw ~ oPw~ n ) t ,  w ~  n ) O ,  

o~1 ot 

oP ~ I 
011 n=o = e~t~ (0") --  -"-gy-- It=t o, won (0, @ oo) = O, n )  O. 

(1.13) 

Constructing the functions Wln(r~l, 0) near t = t I , we fred that the initial boundary-value problem (1.1), (1.4), (1.5) has 
the asymptotic expansion 

N 1 NI--I.  
i 1 [u( t ,  O) = • 8 n u ' n ( t ,  O) -~-8 Y~ ~n (WO (,], O) -~-Wn(~l  , 0))  @ gNI+I/~NI '( t  , 0),  

in which w~ O) and w1(~1, O) are boundary-layer functions near t = t o and t = t l ,  respectively, e~h = tt - -  t and 

eNl+lBlv,(t, O) is the remainder term. 

w (t, O), n /> l: 

(1.14) 

Substituting (1.14) into (1.4) and (1.5), we obtain the boundary conditions for 

i%,,,  (to, o) p ~ o  i o ,  o) w ~ = - -  - P ,~-~ (n~ (to), 0) ,  

p w ~  ( t l ,  o) = - p w ~  (n (tl), o) - pw~_l (o, o), 
w,~ (0, t) = w,~ (2u, t). 

(1.15) 

The boundary conditions (1.15) can be used to determine all the functions w ( t ,  0) in succession. 

2. Certain remarks are in order regarding the asymptotic representations derived above. Unlike the initial boundary- 
value problem, the equations for the truncated boundary-value problem and boundary  layer admit a solution in explicit 
form. Thus, let us suppose, for example, that the functions gk(0), k = 1, 3, are even functions of  the polar angle O, and let 
us put 

gk(O)= ~ g~cosnO, k = t , 3 ,  
71=2 

whereupon 

where 

= , "' [f,n (t) 4 0 + f3= (t) e t , ]  Cos ,~O, Wo (t ,  O) ;~__~ ~ _ n~ (2.1) 
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six Ix,, ( t ,  - t )  . .~h ~t,,, ( t  - -  to) . 
h , ,  ( t )  = ga,, st~ ~, ,  ( t ,  - -  to) ' i.g,, ( t )  = g,~,, si~ ~t,, ( q  - -  ~,>) ' 

Ixn = d l,'~ (n, ~ -  ! )  (n" --[- d) "1/'2, 

Let us determine, for example, the function wOO7, 0). To do so we must solve the boundary-value problem 

o%,11 o~wo 041000 [_ _ _  .-.= d ~ - o  O,  
O,ii 4 ' ~ ~,~rl ~' 

O p w  o 
i 

I ," (0. q) u,~ (2z, ~D. o~ ,l=o = g ( O ) '  w~~ O ' i ~ ) = O '  ~o = 

(2.2) 

An explicit solution of the boundary-value problem (2.2) is given by the equation 

-- ~_-o. z , ~  • ;,") (a,~ cos n0 . b,, sin n0), 

where X~ = (n ~ -4- d) ' / ,  and a n and b n are the Fourier coefficients of the function g(0). Assuming that continuous deriva- 
tives of sufficiently high order exist for the boundary data, we can differentiate the expansion (1.14) and obtain asymptotic 
expansions for the stresses and displacements. Considering the axisymmetrical case (r0 = 0) separately, for the function 
w(t, 0) we obtain an ordinary differential equation, for which the boundary-value problem is solvable in explicit form; here 
the zeroth term in the expansion (1.14) is simply zero, and so the solution of the limiting boundary-value problem does not 
obey any of the initial boundary conditions (1.2). 

A specific consideration is the fact that in the limit e 0 = 0 there also exists the l imi t  % = lira s-%0 , a Lagrange 
e~q-0 

multiplier, which is induced by the fact of inextensibility in the circumferential direction in the limit. The governing 
relations have the following form in the limit: 

err = d u e r ,  rr0 = dl~.er -Jr- qo, Tro = ~rO , eO = O .  

3. We now consider problem b) for Eq. (1.1). Let 

Ow aw 
w (to) = Pl (0), w (ta) = Pz (0), "-57-- (to) = et~ (0), ~- (tl) = et 'p4 (0), (3.1) 

where the functions pk(0), k = 1, 2, 3, 4, are periodic functions of 0. An asymptotic solution of the boundary-value 
problem (1.1), (3.1) is much simpler to construct than in the preceding case; it is given by expression (1.14), where it is 
required to put Pw = w in all the equations of 1, beginning with (1.4). The limiting boundary-value takes the form 

M w  = O, W(to) = pl(O),  w(tx) = pz(O), 

i.e., the degeneration of the initial boundary-value problem into the limiting problem is regular [5]. The absence of 
regularity of degeneration in the boundary-value problem a) is attributable to the fact that the boundary conditions (1.2) 
are "of  the same order" with respect to e, since the boundary conditions (1.2) involve derivatives with respect to the normal 
coordinate, along which rapid variation of the solution takes place. To obtain a regularly degenerating boundary-value 
problem it is necessary to reduce the boundary conditions (1.2) to canonical form, as we have done above. The above- 
noted "confinement" of the boundary conditions (irregularity of degeneration) is typical of degenerate boundary-value 
problems [6, 7]. 
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